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Abstract. The attractive Hubbard model for normal and superconducting ground states is
examined for arbitrary electron concentration by the use of the slave-boson mean-field approx-
imation (SBMFA) technique. This approach, at a saddle-point level, is equivalent to the
Gutzwiller approximation. Several superfluid characteristics of the model are shown for
hypercubic lattices of all dimensions, includingd = ∞, and a comparison with the Bardeen–
Cooper–Schrieffer Hartree–Fock approximation (BCS-HFA) calculations and exact results is
made. Our results show quantitative and qualitative corrections of the SBMFA to the HFA. The
improvement of the SBMFA over the HFA diminishes with increasing lattice dimensionality.
We have also evaluated the energy difference between the superconducting and the normal
states; this is compared with available results for the superconducting critical temperatures in
various dimensions and Uemura-type plots are obtained. The results confirm and substantiate
the assertion of a continuous evolution of the superfluid properties of the model from the weak-
coupling (BCS-like) to the strong-coupling (composite-boson superconductivity) limit.

1. Introduction

The Hubbard model is widely employed in problems concerning metal–insulator transitions,
ferromagnetism, superconductivity and high-temperature superconductivity. Despite its
formal simplicity, it has been solved exactly only for one dimension [1], while for higher
dimensions only approximate solutions have been obtained. Much effort has been devoted
to thed = 2 case, which is related to high-temperature superconductors (HTS).

The local electron pairing and strong correlations are best described by the negative-U

extended Hubbard model, in which the on-site local attraction can result from the coupling
of narrow-band electrons to a bosonic field (phonons, excitons etc), upon elimination of
bosonic degrees of freedom, or from electronic mechanisms (for a review, see [2]). Such a
model has been considered as the effective model of extreme type II superconductors with
s-wave pairing including the doped barium bismuthates, fullerides and Chevrel phases. It
can also lead to some relevant understanding in the field of cuprate HTS [2–4].

The description of the superconducting state of the attractive Hubbard model is good
only in the limits of weak and strong coupling. For intermediate values of the interaction,
both the Hartree–Fock approximation (HFA) and the strong-coupling expansions are less
reliable. The purpose of this paper is to examine the properties of the model for hypercubic
lattices for one, two, three and an infinite number of dimensions in the slave-boson approach.
The slave-boson method improves on the HFA results, because it takes into account the
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on-site electron correlations. It is not restricted to strong- or weak-coupling limits and
it can also give credible results for the intermediate-coupling regime. In the saddle-point
approximation this approach is equivalent to the Gutzwiller approximation of the Gutzwiller
wave function; however, it enables us to go beyond that approximation [5]. We use this
method at a saddle-point level to investigate the behaviour of the Hubbard model, including
its electromagnetic properties, for different, realistic densities of states and to examine the
applicability of the infinite-dimension limit [6] as an approximation to the three-dimensional
case in this type of calculation. We evaluate the properties of the negative-U Hubbard
model with arbitrary electron filling (which is equivalent to the positive-U Hubbard model
at half-filling in an effective magnetic field) and in particular we analyse the crossover from
BCS-like superconductivity, with extended Cooper pairs, to superconductivity of composite
bosons (local Cooper pairs), which occurs when one passes from a weak- to a strong-
coupling regime (from|U | � t to |U | � t) [2–4].

This is particularly relevant for HTS, which, having a short coherence length comparable
to the average interparticle spacing, fall into the intermediate region between BCS physics
and the preformed electron pair scenario [7, 8].

Related studies were performed ford = 2 at half-filling by Denteneer [9] and for a square
density of states by Sofo and Balseiro [10] as well as by Bu lka and Robaszkiewicz [11].

The paper is organized as follows. In section 2 we outline the slave-boson method and
present the free energies in the superconducting and normal phases as well as the formulae
for the electromagnetic properties. Section 3 presents our results for the superconducting
and electromagnetic properties of the model for various lattices versus the coupling strength
and the electron filling. These results are compared with the exact solution ford = 1, those
from the Bardeen–Cooper–Schrieffer HFA approach and those from other treatments. We
also discuss the scaling properties of the model, including the variations of the condensation
energy, the superfluid density and the ratio of the energy gap to the critical temperature, as
well as the infinite-dimensional case. We conclude the work in section 4. The appendix
contains an alternative derivation of the main equations used in the SBMFA (slave-boson
mean-field approximation) method without resorting to the electron–hole transformation.

2. The slave-boson approach

In this section we describe the slave-boson method and apply it to the negative-U Hubbard
model. In the standard notation the model takes the form

H = −t
∑
i,j,σ

c
†
iσ cjσ − U

∑
i

ni↑ni↓ − µ
∑
i,σ

niσ (1)

and the number of electrons per lattice site is given by

n = Ne/N = (1/N)
∑
iσ

〈niσ 〉.

From several possible ways of introducing slave bosons, we have chosen that adopted
by Kotliar and Ruckenstein [5]. This consists in connecting an auxiliary boson with each
of four possible electronic states (on every lattice site):|0〉, |σ 〉, |2〉 and assuming that they
are created out of the new vacuum state. These are

|0〉 = e†|v〉 |σ 〉 = p†σ f †σ |v〉 |2〉 = d†f †↑f †↓|v〉 (2)

where thefσ fulfil the fermion commutation relations ande, pσ , d fulfil the boson com-
mutation relations. There are two constraints imposed on the system:

f
†
iσ fiσ = p†iσ piσ + d†i di

∑
σ

p
†
iσ piσ + e†i ei + d†i di = 1. (3)
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The electron annihilation operator can be expressed as

ciσ = (e†i piσ + p†iσ di)fiσ . (4)

Through the electron–hole transformation, the attractive Hubbard model on a bipartite lattice
for arbitrary band filling (with the additional pairing fieldλ(0)) is transformed into the
repulsive one at half-filling, in the magnetic fieldh = 2µ+U and with fixed magnetization
mz = n− 1. The superconducting order parameter

2x0 = 〈c†i↑c†i↓〉 + 〈ci↓ci↑〉
is transformed into staggered magnetic ordering in thex–y plane:

mx = 〈c†i↑ci↓ + c†i↓ci↑〉 exp(iQ ·Ri)

whereQ = (π/a, π/a, π/a, . . .) is a half of the smallest reciprocal-lattice vector, and the
charge operators transform into the spin operators and vice versa [2]. One then obtains

H = −t
∑
i,j,σ

c
†
iσ cjσ + U

∑
i

ni↑ni↓ − U
2

∑
iσ

niσ − h
2

∑
i

(ni↑ − ni↓)

− λ(0)

2

∑
i

(
ηi(c

†
i↑ci↓ + c†i↓ci↑)−mx

)
(5)

whereηi = exp(iQ ·Ri). Next, we follow the procedure of Sofo and Balseiro [10], and
apply the canonical transformation consisting in rotation of the spin operators to a new
quantization axis aligned with the induced magnetization. Only now do we introduce the
slave-boson operators and perform mean-field factorization. The final effect of the above
analysis is linearization of the Hamiltonian, at the expense of the appearance of the band-
narrowing factor in the hopping term.

The canonical transformation of the electron operators is of the form(
ci↑
ci↓

)
=
(

cosφi − sinφi
sinφi cosφi

)(
c′i↑
c′i↓

)
(6)

which corresponds to the rotation of the spin operators:(
Six
Siy
Siz

)
=
( cosθi 0 sinθi

0 1 0
− sinθi 0 cosθi

) S ′ixS ′iy
S ′iz

 (7)

where

Six = (S†i + S−i )/2 Siy = (S†i − S−i )/2i Siz = (ni↑ − ni↓)/2
S
†
i = c†i↑ci↓ S−i = c†i↓ci↑

and θi = 2φi . When we apply this rotation to the Hamiltonian given by equation (5) and
introduce the slave boson, we obtain

H = −t cosθ
∑
i,j,σ

ẑ
†
iσ ẑjσ f

†
iσ fjσ − t sinθ

∑
i,j

ηi(ẑ
†
i↑f

†
i↑fj↓ẑj↓ − ẑ†i↓f †i↓fj↑ẑj↑)

− 1

2
(h cosθ + λ(0) sinθ)

∑
i

(f
†
i↑fi↑ − f †i↓fi↓)

− 1

2
(λ(0) cosθ − h sinθ)

∑
i

ηi(p̂
†
i↑f

†
i↑fi↓p̂i↓ + p̂†i↓f †i↓fi↑p̂i↑)
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+ U
∑
i

d
†
i di −

U

2

∑
i,σ

f
†
iσ fiσ − µN −

λ(0)mx

2

−
∑
i

λ
(1)
i (e

†
i ei + p†i↑pi↑ + p†i↓pi↓ + d†i di − 1)

−
∑
i,σ

λ(2)(f
†
iσ fiσ − p†iσ pjσ − d†i di) (8)

where we have omitted the primes.λ(2) and λ(1) are Lagrange multipliers enforcing the
constraints of equation (3). In the above we have introduced the factorsẑiσ and p̂iσ given
by

ẑiσ = 1√
1− p†iσ piσ − d†i di

ziσ
1√

1− e†i ei − p†iσ piσ
(9)

p̂iσ = 1√
1− p†iσ piσ − d†i di

piσ
1√

1− e†i ei − p†iσ piσ
(10)

and ziσ = e
†
i piσ + p†iσ di . This choice of operatorŝziσ and p̂iσ guarantees the correct

behaviour of the model in theU → 0 limit [5].
In the following we make the saddle-point approximation for the Bose fields, replacing

them by their mean (and site-independent) values, which results in the appearance of two
elements: the band-narrowing factorq and a factorg changing the effective chemical
potential and superconducting gap:

q = 〈ẑ†iσ ẑjσ 〉 (11)

g = 〈p̂†iσ p̂iσ 〉. (12)

With the use of the electron–hole transformation and the requirement that the mag-
netization at each site points along thez-axis, we can expressq andg as

q = 4d2

1−m2

(
1− 2d2+

√
(1− 2d2)2−m2

)
(13)

g = 2

1−m2

√
(1− 2d2)2−m2 (14)

wherem2 = m2
z in the normal phase andm2 = m2

z + m2
x in the ordered (superconducting)

phase, respectively. The double occupancy (single occupancy in the attractive Hubbard
model) isd2 = 〈d†i di〉 and

tanθ = mx/mz. (15)

The resulting Hamiltonian is quadratic in fermion operators and can be diagonalized by
the standard Bogolyubov-type transformation. Finally, the bosonic averages, the variational
parameters and the rotation angle are calculated by extremizing the free energy.

In the normal phase,λ(0) = θ = 0 and the free energy per lattice site takes the following
form [10]:

FN = − 2

Nβ

∑
k

ln

{
2 cosh

[
β

2
(qεk − h/2)

]}
+ Ud2+ (h− U)mz/2− U/2. (16)

In the superconducting state,

FS = − 2

Nβ

∑
k

ln

[
2 cosh

(
βEk

2

)]
+ Ud2− Un/2+ hmz/2+ λ(0)mx/2 (17)
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Ek =
√
(q0εk − h1)2+ (q1εk + λ1)2 (18)

h1 = hmz + λ(0)mx
2m

λ1 = gλ
(0)mz − hmx

2m
q0 = qmz

m
q1 = qmx

m
(19)

with mx = m sinθ , whereθ is defined by equation (15), andβ = 1/kBT . The equations for
mx , h, λ(0) andd2 are obtained by minimizing the free energyFS and then they are solved
self-consistently for a given band structure. We can obtain analogous equations, leading to
the same results, in the negative-U Hubbard model, without resorting to the electron–hole
transformation. The derivation is given in the appendix.

Let us note that an equivalent procedure at the SBMFA level consists in choosing the
spin- and charge-rotationally invariant version of the slave-boson method of Frésard and
Wölfle [12] (see also [11]). To establish this equivalence, we transform the quasiparticle
energyEk, with new fieldsη andδ, into the form

Ek =
√
(qεk − η)2+ δ2 (20)

η = h1 cosθ − λ1 sinθ (21)

δ = h1 sinθ + λ1 cosθ. (22)

The free-energy equation (17) can be expressed as

FS = − 2

βN

∑
k

ln

[
2 cosh

(
β

2
Ek

)]
+ Ud2− Un/2+ ηmz + δmx. (23)

This is the form obtained for the spin- and charge-rotationally invariant version of slave
bosons [11]. If we treatη and δ as variational parameters, we get equations appropriate
for this method, and the results obtained are exactly the same as in our approach. Thus,
the two methods are strictly equivalent at the SBMFA level. In fact, at this level, global
rotation of spin operators restores the rotational invariance.

The superconducting energy gap is 2δ if η is within the band, or is given by 2Ek
evaluated forεk = lower band boundary, ifη falls below the bottom of the bare band.

For the sake of comparison, we also give the HFA solution for the Hubbard model
equation (1) for the superconducting state:

FHFS = µ̄(n− 1)− U
4
n2+ |1|

2

U
− 2

βN

∑
k

ln[2 cosh(βEk/2)] (24)

n− 1= − 1

N

∑
k

ε̄k

Ek
tanh(βEk/2) (25)

1

U
= 1

N

∑
k

1

2Ek
tanh(βEk/2) (26)

where

Ek =
√
ε̄2
k +12 1 = Ux0 x0 = |〈c†i↑c†i↓〉|

ε̄k = εk − µ̄ µ̄ = µ+ U
2
n. (27)

We should point out that atn = 1 the superconducting state (SS) and charge-density-
wave (CDW) state are strictly degenerate due to the SO(4) symmetry of the Hubbard model
and can coexist with arbitrary weights [2, 4, 13]. While this special symmetry point can be
incorporated in our approach, in the following we shall concentrate on the superconducting
state only.



9034 M Ba̧k and R Micnas

2.1. Electromagnetic properties

As far as the electromagnetic properties are concerned, we shall calculate two quantities:
the London penetration depthλ, measuring the extent of the penetration of the magnetic
field into the superconductor, and the Ginzburg–Landau coherence lengthξ .

In the linear response theory the relation between the currentJα(k, ω) and the applied
vector potentialAα(k, ω) (α = x, y, z) is given by

Jα(k, ω) = N c

4π

∑
β

[δαβK
dia
α +Kpara

αβ (k, ω)]Aβ(k, ω) (28)

whereKdia
α andKpara

αβ are the diamagnetic and paramagnetic parts of the response kernel.
In the static limit (ω = 0), λ is determined by the transverse part of the total kernel and in
the ground state it can be given by the formula

λ = 1√−Kdia
(29)

whereKdia is the diamagnetic part of the response kernel.Kdia can be expressed as

Kdia = 8πe2

h̄2c2ad−2

〈Ekin〉
zN

(30)

wherez is the coordination number,a is the lattice constant andEkin is the hopping part of
equation (1). In the slave-boson approach the mean kinetic energy is given by the formula

〈Ekin〉 = q ∂Fs
∂q

. (31)

Let us note that, atT = 0 K, the formula−Kdia = 1/λ2 gives the value of the superfluid
densityρs ; a non-zero value corresponds to the Meissner effect.

The Ginzburg–Landau coherence length (i.e. the spatial extent of the superconducting
order parameter) can be obtained through the relation [14]

ξ = 80

2π
√

2λHc
(32)

where80 = hc/2e is the quantum flux, and the thermodynamic critical fieldHc can be
calculated from

H 2
c

8π
= Fn − Fs

Nad
. (33)

3. Results

For the numerical results presented below (atT = 0 K), we will use two sets of units: either
t for all lattice structures or half of the bandwidthD, which is 2t for d = 1, 4t for d = 2,
6t for a sc lattice and 8t for a bcc lattice. If the unit is not stated explicitly, we are using
the half-bandwidth unit. This unit is more suitable for comparisons of quantities among
different lattices. It should be used especially in discussion of the crossover from the weak-
to the strong-coupling limit. The baret-unit permits us to compare the absolute values of
a given quantity. Calculations using a rectangular density of states can be compared only
with ones carried out using theD-unit.

The results ford = ∞ require a third set of units:t∗ = t√2d ≡ 1. When expressed in
this unit the calculated quantities for different lattices converge as the lattice dimensionality
increases.
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For infinite dimensionality we use the Gaussian density of states:

ρ(ε)∞ = 1√
2πt∗

exp(−ε2/2t∗). (34)

In one dimension,

ρ(ε)1D = 1

2tπ

1√
1− (ε/2t)2

(35)

for |ε/2t | < 1 and is zero otherwise. For two dimensions the density of states is given by

ρ(ε)2D = 1

2tπ2
K(1− (ε/4t)2) (36)

for |ε/4t | < 1 and is zero otherwise, whereK is the complete elliptic integral of the first
kind. In three dimensions, for the sc, fcc and bcc lattice structures, we use the analytical
approximation to the densities of states as calculated numerically by Jelitto [15]. Due to the
electron–hole symmetry of the model, all of the concentration dependences are symmetric
with respect to the changen→ 2− n, so they will be given for the range〈0; 1〉 of electron
densities only.

Henceforth, by stating thatd = 3 we will mean that we are considering a sc lattice, if
not stated explicitly otherwise, and by sayingd = 2 we will mean that we are considering
a two-dimensional square lattice.

2.0

3.0

4.0

5.0

6.0

U
c/D

sq DOS
d = 2
d = 3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
n

6.20

6.30

6.40

6.50

6.60

6.70

U
c/t

*

d = inf.

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

U*

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

U/D
0.0

0.2

0.4

0.6

0.8

1.0

q N

Figure 1. The critical valueUc/D versus the electron concentrationn in the normal state for
lattices of dimensiond = 2, 3,∞ and a square DOS. The inset shows the band-narrowing
factor for the normal state versusU/D, and versusU∗ for d = ∞, at half-filling. For infinite
dimensions the appropriate scales are to the left of the main figure and at the top of the inset.
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3.1. The normal state

In the normal phase, for a given electron density, both the single occupancyd2 and the
band-narrowing factorq decrease with increasing|U |. Whenq reaches 0 at half-filling for a
certain (positive)Uc, we obtain a metal–insulator transition. In the case of attractive on-site
interaction,Uc depends on the electron density in the way shown in figure 1. The values
of Uc/D at n = 1 are 3.24228 and 2.67313, respectively, ford = 2 andd = 3 sc lattices,
2.61688 for fcc lattices and 2.06458 for bcc lattices. For a rectangular band of width 2D,
Uc increases monotonically from 0 to 4 at half-filling according to the formula

Uc/2D = 1+
√
n(2− n).

The characteristics for the real densities of states are flatter.Uc/D rises sharply for low
electron densities and changes little for intermediate densities to reach the values given above
at half-filling. The range of interaction (D-units) for which hopping is not yet suppressed
is larger for ad = 2 square lattice than for ad = 3 sc lattice (see the inset in figure 1).
In t-units the order is reversed:Uc/t is smaller ford = 2 and larger ford = 3. The
case of infinite dimensions cannot be directly compared to the previous ones due to the
different choice of units, which will be discussed further. With decreasing electron density,
Uc gets smaller for finite-dimensional lattices, but ford = ∞, Uc sharply rises; this is
connected with the infinite bandwidth in this case. This shows possible restrictions of the
infinite-dimensions approximation for low electron densities (which is also seen in figure

0.0 2.0 4.0 6.0U/D
0.94

0.96

0.98

1.00

q n=0.2
n=0.3
n=0.5
n=1

0.0 2.0 4.0 6.0
U/D

0.91

0.93

0.95

0.97

0.99

q

bcc
sc
d = 2
sq DOS
d = 1

d=2

Figure 2. The band-narrowing factorq for the superconducting state versus the on-site
interactionU/D at half-filling for ad = 1 lattice, ad = 2 square lattice, bcc and sc lattices and
a square DOS. In the inset, the factorq for a two-dimensional square lattice is plotted for the
particle densitiesn = 0.2, n = 0.3, n = 0.5 andn = 1.
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20 in section 3.5).
Let us note, however, that for lattice dimensionalities larger than one, the ground state

is superconducting (or with coexisting SS and CDW ordering forn = 1) and its properties
will be discussed next.

3.2. The superconducting state

The band-narrowing factorq versusU/D is plotted in figure 2 forn = 1. The valueq = 1
is the HFA result. The deviation ofq from 1 reflects the effect of local correlations, which
are taken into account in the SBMFA approach. As we see, there is a certain value of
U for which this deviation is the strongest. ThisU -value grows with decreasing lattice
dimensionality. We note the weaker influence of local correlations in the case of the square
lattice with the exact DOS than in the case of the square lattice with the rectangular DOS.
Although for anyn, q is close to 1, in contrast to the behaviour ofq in the normal state,
these small differences are responsible for the stability of the superconductivity for weak
and intermediate coupling and for the differences between the slave-boson results and the
HFA.

There is an interesting feature concerning thed = 2 square lattice (see the inset in
figure 2) and the bcc lattice: both lattices exhibit van Hove singularity at half-filling. While
for other lattices,q grows with decreasingn, for these two,q decreases when we move
away from half-filling. The minimum is reached at aroundn ∼ 0.5 and when we decrease
n further, q increases. This feature may be connected with the decrease of the superfluid
density for the two-dimensional square lattice in the rangen ∈ 〈0.8, 1〉 (see figure 14, later).
Let us note that this irregularity is not visible in the behaviour of other calculated quantities,
due to the dominant influence of the mean-field approximation.

The results for the energy gap in one dimension (d = 1) are given in figure 3, where
we plot the gap versus the electron concentration. We show plots for different values of the

0.0 0.2 0.4 0.6 0.8 1.0
n

0.00

0.10

0.20

0.30

0.40

0.50

E
g/

U

HFA
SB MFA
exact

U=5

U=1

U=0.5

d=1

Figure 3. Exact, HFA and SBMFA values of the ratio of the energy gap to the on-site interaction
U versus the electron concentrationn for d = 1 for U/D = 0.5, U/D = 1, U/D = 5. The
exact results are from Marsiglio [16].
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0.0 0.2 0.4 0.6 0.8 1.0
n

0.00

0.10

0.20

0.30

0.40

0.50

E
g/

U

HFA
SB MFA

U=5

U=2

U=1

d=2

Figure 4. HFA and SBMFA values of the ratio of the energy gap to the on-site interaction
U versus the electron concentrationn for the d = 2 square lattice forU/D = 1, U/D = 2,
U/D = 5.

0.0 0.2 0.4 0.6 0.8 1.0
n

0.00

0.10

0.20

0.30

0.40

0.50

E
g/

U

HFA
SB MFA

U=5

U=2

U=1

d=3

Figure 5. HFA and SBMFA values of the ratio of the energy gap to the on-site interactionU

versus the electron concentrationn for the d = 3 sc lattice forU/D = 1, U/D = 2, U/D = 5.

on-site interactionU/D, calculated in both the HFA and the SBMFA. They are compared
with the exact results based on the Betheansatzcalculations made by Marsiglio [16]. The
HFA results for the energy gap are rather poor, giving non-monotonic dependence on the
electron densityn, in sharp contrast to the monotonic behaviour of the exact solution. Also,
the HFA numerical values are up to five times higher, the difference being the largest at
half-filling. It is of interest that ford = 1, the Bardeen–Cooper–Schrieffer HFA is a very
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good approximation to the ground-state energy but it yields incorrect results in the evaluation
of the energy gap [16, 17], except for in the case of the zero-density limit. The SBMFA
solution is closer to the exact one, although, in general, with a shape resembling that of the
HFA non-monotonic solution. The numerical value of the gap in the weak-coupling limit
for n = 1 in the SBMFA can be up to 150% of the exact one (compared to about 400% in
the HFA) in the weak-coupling limit. For strong coupling the SBMFA gap becomes closer
to the HFA results but the quantitative correction is still quite large. This difference between
the SBMFA and the exact results most probably stems from the nature of the ground state
for d = 1 which does not exhibit long-range order.

The results concerning the superconducting phase ford = 2 andd = 3 lattice structures
are shown in figures 4 and 5 and they exhibit similar behaviour. Forn→ 0 they go over
to the exact ones, i.e. the energy gap ford = 2 is just half of the binding energy for two
electrons in an empty lattice. However, ford = 3, Eg → 0 for U/D = 1, because a real
bound state for the sc lattice is formed only forU/D > 1.318 [2].

Figure 6 shows the ratio of the SB energy gap to the HF energy gap for a half-filled
band. With increasing on-site interaction this ratio tends to 1 and for largeU the largest
corrections are ford = 1; they are smaller ford = 2 and smallest ford = 3. This
sequence is valid also for intermediate values ofU , but whenU/D approaches 0, the
curve ford = 2 steeply increases and becomes larger than the ratio ford = 3, due to the
van Hove singularity ford = 2. In t-units the corrections increase with dimensionality in
the strong-coupling limit. With decreasingU/t the corrections in one dimension become
dominant, irrespective of the set of units used. The largest differences between the energy
gap calculated in the SBMFA and in the HFA are for small and intermediate values of the
on-site interactionU . In the inset the same quantity is shown versus the electron density
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Figure 6. The ratio of the SBMFA energy gap to the HFA energy gap versus the on-site
interactionU/D at half-filling for d = 1 andd = 2 square lattice and sc lattice structures. In
the inset the same ratio versusn for fixed U/D = 1 with a square-DOS curve added is shown.
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Figure 7. The condensation energy in half-bandwidth units versus the on-site interactionU/D

at half-filling for d = 1 andd = 2 square lattices, a square DOS, andd = 3 sc and bcc lattices.
It is shown int-units in the inset.

n, for fixedU/D = 1. For small densities the sequence of curves reverses: one dimension
yields the smallest corrections and a sc lattice the largest—exactly opposite to the situation
for an approximately half-filled band.

The free-energy difference between the normal and the superconducting states(1F)

(i.e. the condensation energy) at half-filling is displayed for various lattices in figure 7.
Like in theq versusU plot, the highest extremum is ford = 1 (inD-units). The maximum
of the free-energy difference shifts towards lower values ofU/D with increasing lattice
dimensionality, but it does not coincide with the points where the band-narrowing factor is
a minimum. In three dimensions the peaks of the condensation energy are approximately
of the same value for the bcc and sc lattices, but the value ofU/D for which the first one
appears is smaller than that at which the latter appears.

Using t-units, we see that changing the coordination number without changing the
dimensionality (bcc to sc) makes the minima differ in value but they appear for the same
U/t coordinate. The larger the coordination number of a given lattice, the larger the value
of the maximum and the value ofU/t at which it appears. For the other electron densities
the condensation energy versusU behaviour is qualitatively similar (see figures 8 and 9).
The maximum of1F , although it lowers with decreasingn, remains almost unchanged
relative to theU -coordinate and only for very low electron densities does it start to move
towards weak-couplingU -values, thus extending the strong-coupling regime. Finally, we
note that figure 7 also shows a change of the thermodynamic critical magnetic field withU

according to the relation given by equation (33). Our results for the free-energy difference
andH 2

c in the SBMFA are much more realistic than those in the HFA, since the latter
neglects the effects of local correlations in the normal state and grossly overestimates the
condensation energy (see also references [10, 11]). Let us recall that the SBMFA agrees
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Figure 8. The Kosterlitz–Thouless critical temperature(Tc), the condensation energy(FN −FS)
and the critical magnetic field(Hc) versus the on-site interactionU/4t for a d = 2 square lattice
for the electron densitiesn = 0.2 andn = 0.75.

with a perturbational treatment both in the weak- and strong-coupling limits [5, 9] while
this is the case for the HFA only for the weak-coupling limit.

In the slave-boson approach to the Hubbard model, the calculation of the super-
conducting critical temperature is not straightforward. We can ask, however, whether the
dependences of a condensation energy in the ground state versus the coupling strength and
density can be approximations of analogous variations of the critical temperature. The
answer is depicted in figures 8, 9, 10. We have plotted the results of the alloy-analogy
approximation to the functional-integral method ford = 3 given by Hasegawa [19] together
with the results obtained by using the linked-cluster expansion, the high-temperature series
expansion of the Heisenberg model withs = 1/2 and the molecular-field approximation of
[20] (figure 9), Monte Carlo calculations ford = ∞ given by Jarrell [21] (figure 10) and
numerical results forTc from the Kosterlitz–Thouless (KT) transition ford = 2 (figure 8),
together with plots of the free-energy difference in the ground state. We remind the reader
that, by the canonical transformation method, the attractive Hubbard model in the strong-
coupling limit (|U | � t) can be mapped onto the effective pseudospin Heisenberg model
with s = 1/2, with the single occupancies excluded [2, 13].

As far as thed = 2 case is concerned, we note that the model undergoes the KT
transition away from half-filling. In order to determineTc in 2D we have used the relation
for the universal jump of the superfluid densityρs (evaluated belowTc) [18]:

ρ−s (Tc) =
2

π
kBTc (37)

where

ρs(T ) = − t
N

∑
k

[
εk cos(kx)

2Ek
tanh(Ek/2kBT )+ t sin2(kx)

2kBT cosh2(Ek/2kBT )

]
(38)
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Figure 9. The critical temperature, the condensation energy and the critical magnetic field versus
the on-site interactionU/6t for a d = 3 sc lattice at half-filling together with the condensation
energy forn = 0.2. AASB indicates the results obtained by using the alloy-analogy slave-
boson approximation given by Hasegawa [19]; LCE, HTSE, MFA indicate the results obtained
from the linked-cluster expansion, the high-temperature series expansion and the mean-field
approximation, in the large-U limit, respectively, and these results were taken from the work of
Pan and Wang [20]. Triangles show the thermodynamic critical field, the thick solid line shows
the condensation energy and the fine solid line (BCS) shows the Bardeen–Cooper–Schrieffer
(BCS) critical temperature.

with the notation of equation (27);1 andµ are calculated from the BCS equations (25)
and (26).

The general shape of the curves and the absolute value of the maxima for1F(U)

and Tc(U) are comparable, but the maxima appear for differentU -values. The critical
temperature reaches the highest peak for lower values ofU and is itself slightly smaller
than, comparable to and slightly larger than the maxima of the free-energy difference for
d = 2, d = 3 andd = ∞ respectively. In three dimensions, for the sc lattice the linked-
cluster expansion yields a maximum of the critical temperature that is smaller and for smaller
U -values than slave-boson mean-field results. In the large-U limit, the former agrees with
the high-temperature series expansion of the Heisenberg model withs = 1/2 while the
latter tends to the molecular-field approximation. The linked-cluster expansion, which is
more reliable, indicates that the condensation energy in three dimensions is not as good an
approximation of the critical temperature as we might infer from the mean-field calculations.
Nevertheless, in the weak-coupling limit, the linked-cluster expansion becomes dubious,
yielding results exceeding the BCS ones. In this limit the mean-field calculations are much
better. From figures 8 and 9 we see that a decrease in the electron density considerably
diminishes the values of the maxima of both quantities and the difference between them,
but changes their positions on theU -axis only very weakly, the shift being noticeable only
for very small densities. For smaller densities the maxima of both the condensation energy



Superconducting properties of the attractive Hubbard model 9043

0.0 2.5 5.0 7.5 10.0
U/t*

0.00

0.05

0.10

0.15

0.20

HC/H*0

kTc/t*, Jarrell 1992
(FN− FS)/t*

d = inf.

Figure 10. The critical temperature (from Jarrell [21]), the condensation energy and the critical
magnetic field versus the on-site interactionU/t∗ for d = ∞ at half-filling.
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Figure 11. The ratio 2kBTc/Eg versusU/D for a d = 3 sc lattice at half-filling and for ad = 2
square lattice for band fillings ofn = 0.2, 0.75 in the SBMFA and the HFA.

and the critical temperature appear for smallerU -values. Let us note that the slave-boson
method yields the atomic-limit result for the normal state for sufficiently largeU (U > Uc;
see figure 1) while, as we know (e.g. [2]), there exist processes of the order oft2/U in the
strong-coupling limit. The resultant free-energy difference curves perpetuate this error in
this range.

Additionally, figures 8–10 show the thermodynamic critical magnetic fieldHc, in units
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of

H0 =
√

8πD/ad.

Hc seems to be a reliable approximation to the critical temperature in the weak-coupling
regime, especially ford = 2 and for smaller electron densities.
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Figure 12. The condensation energy in half-bandwidth units versus 1/λ2 for a sc lattice and
for a d = 2 square lattice, plotted for fixedn with U as a driving parameter of crossover as
well as for fixedU with n as a driving parameter. For a sc lattice curves are forU/D = 1
andU/D = 5 with n ∈ 〈0, 1〉 and at half-filling withU/D ∈ 〈0, 6〉. For ad = 2 square lattice
curves are forU/D = 1 andU/D = 5 with n ∈ 〈0, 1〉 and forn = 0.2, n = 0.75 andn = 1
with U/D ∈ 〈0, 6〉. λ is given in units ofλ0 = h̄c

√
ad−2z/8πD

/
e.

Knowing the values of the energy gap, it is of interest to determine the ratioskBTc/Eg
and compare them with the BCS value. In figure 11 there are plots of the ratio of the critical
temperature to the energy gap versusU/D (Tc for a d = 3 lattice from [19] and ford = 2
from the KT transition). For largeU the ratio quite quickly decreases, becauseTc diminishes
as shown in figures 8 and 9, while1 ≈ U in this limit. With decreasingU , the ratio grows
until it reaches the point at which a decrease inU does not change the value of the ratio,
which in the HFA takes the BCS value 0.568, irrespective of the lattice dimensionality (see
Czart et al [22]). In the SBMFA the ratio decreases slightly when we approachU = 0,
reaching a value of 0.568Eg(HF)/Eg(SB), larger than the BCS one. Notice, however,
that we have used the same value ofTc, evaluated in the KT scenario (through the BCS
approximation for the superfluid density), but that the energy gap values are from HFA and
SBMFA treatments, respectively. TheU -value for which the ratio becomes constant in the
HFA, or approximately constant in the SBMFA, decreases with growing electron density.
This U -value, inD-units, is also smaller for ad = 3 lattice than for ad = 2 one.

3.3. Scaling properties

Although, as we have discussed before, the condensation energy in general does not
quantitatively determine the behaviour of the critical temperature, we have plotted1F
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versus the superfluid density 1/λ2 to obtain a Uemura-type plot [7] and searched for scaling
properties. The outcome is shown in figure 12. Results of many different calculations
for different U and n fit perfectly on our Uemura-type plot. The free-energy difference
is proportional to the superfluid density up to a certain value where it reaches a peak
and then decreases. The absolute value of the peak and its superfluid density coordinate
depend onU , n and the dimensionality of the lattice. For a three-dimensional lattice the
maximum of the free-energy difference is lower than for a two-dimensional one at the same
electron concentration (assuming the same value of the hopping integralt for the two cases).
The plots were extracted from the results for1F and λ versusU and n. In the curves
calculated for a constant electron density, a decrease in the superfluid density is equivalent
to an increase in the absolute value of the on-site interactionU . The peak is reached for
U/D ∼ 2.3 for a sc lattice with a half-filled band and about 2.8 ford = 2—these values are
approximately the same at all densitiesn examined. This is in agreement with our results
for the critical temperature ford = 2, which show that the peak ofTc is reached at about the
same value ofU over a very broad range of electron densities. When we further increase
U we move to the part of the curve of constant slope and1F decreases to 0 for largeU .
This is the part of the plot corresponding to low superfluid densities where the slopes of all
of the curves take a universal value.

Our plot resembles that of Uemura only for largeU , as expected, because the char-
acteristic dependence ofTc on 1/λ2 was found only for type II superconductors, with strong
pairing and short coherence lengths. For smallU we do not obtain the universal slope
with decreasingn, and the plots are non-universal. ForU large enough, the behaviour is
universal for all possible electron densities.

For the sake of comparison, a plot of the critical temperature versus 1/λ2 for d = 2 for
n = 0.75 is shown in figure 13. For both curves,Tc comes from the Kosterlitz–Thouless
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Figure 13. The Kosterlitz–Thouless critical temperature versus 1/λ2 for a d = 2 square lattice,
for band fillings ofn = 0.2 andn = 0.75 in the HFA and the SBMFA. Straight lines show the
universal slope in the two approximations.λ is given in units ofλ0 = h̄c
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Figure 14. The superfluid density 1/λ2 versus the electron concentration for ad = 2 square
lattice forU/4t = 1 in the HFA and SBMFA, together with the results obtained using the exact-
diagonalization method by Denteneer [23].λ is given in units ofλ0 = h̄c
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transition andλ from the HF or SB approximations. For a fixedU an increase in the
superfluid density is equivalent to an increase in electron density. Both methods yield the
universal behaviour in the strong-coupling limit. BCS-HFA points create a line slanting
at the angleπ/2 (with the factor 1/8 included in the definition ofλ), while SBMFA
points create one slanting at a slightly smaller angle. This angle is smaller than in the
case of condensation energy versus 1/λ2 and the decreasing branch descends much more
steeply. Comparing the HFA and SBMFA, we see that the BCS-HFA method produces
a slightly higher transition temperature for a givenλ in the ‘underdoped’ region (to the
left of the maximum) and a slightly smaller one in the ‘overdoped’ region (to the right of
the maximum) than the SBMFA method. This difference is not large, like the difference
between theλ-values evaluated in the HFA and SBMFA.

3.4. Electromagnetic properties

The electromagnetic properties are shown in figures 14–18 (Hc in figures 8–10). The
London penetration depthλ determined in the SBMFA does not differ much from the
results for the HFA (we calculateλ in units of λ0 = h̄c

√
zad−2

/
e
√

8πD). A plot of the
inverse square ofλ (the superfluid density) is given in figure 14, together with the results
obtained using the exact-diagonalization method by Denteneer [23] for a 4× 4 lattice. The
simple HF approach is good over a wide range of electron densities from 0 to about 0.8,
with the SBMFA results being only slightly larger. The discrepancies between the two
curves and the exact-diagonalization results appear at aroundn = 0.8. At this density,ρs
from the exact-diagonalization method begins to decrease, whileρs in the HFA or SBMFA
monotonically increases with the electron density, reaching a maximum at half-filling. The
two different kinds of behaviour appear because in both the HFA and the SBMFA the
effect of the current–current correlations is neglected, and short-range CDW correlations,
important close to half-filling, are not taken into account.
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Figure 15. The Ginzburg–Landau coherence lengthξ/ξ(0) versus the on-site interactionU/D
at half-filling for a d = 2 square lattice and ad = 3 sc lattice in the SBMFA and HFA. The
inset shows the SBMFA plots ofξ/ξ(0) for a d = 2 square lattice and ad = 3 sc lattice in
t-units. ξ(0) = a/2√2z.

Let us now discuss the evolution of the correlation length. The Ginzburg–Landau (GL)
coherence lengthξ (in units ofξ0 = a/2

√
2z), shown in figure 15, tends to a constant value√

2 in the strong-coupling limit and diverges to infinity whenU approaches 0. For a fixed
U in the region of divergence, thed = 2 lattice yields larger values ofξ than thed = 3
lattice if we useD-units and smaller values if we uset-units.

The ξ -dependence on the electron density forU/D = 1 (figure 16) is qualitatively
different for different lattices:ξ decreases whenn approaches the half-filled band for sc
and d = 2 lattices and increases for a square density of states. The HFA curve is very
close to the slave-boson approach results ford = 3, but is lower by about 30% ford = 2
and is lower by up to 50% in the square-DOS case.ξ plotted ford = ∞ is a very good
approximation to thed = 3 case for the range of electron densities 0.1–1. Changing to
t-units (see the inset in figure 16) increases only the difference between the absolute values
of ξ reached ford = 2 andd = 3 lattices.

Next, we compare the pair radiusξpair with the Ginzburg–Landau coherence length.ξpair

can be evaluated as follows [24]:

ξ2
pair =

(
N−1

∑
k

|∇φ(k)|2
)/(

N−1
∑
k

|φ(k)|2
)

(39)

whereφ(k) is the ‘internal pair wave function’ determined in the BCS-HFA, i.e.φ(k) =
1/2Ek. It measures a pair radius in the BCS condensate (or more precisely, two-electron
correlation) and in then → 0 limit it gives the bound-state radius for the two-electron
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Figure 16. The Ginzburg–Landau coherence lengthξ/ξ(0) versus the electron concentrationn
in the SBMFA and HFA forU/D = 1 for a d = 2 square lattice, ad = 3 sc lattice, a square
DOS andd = ∞ (only in the SBMFA). The inset shows the same plots int-units for ad = 2
square lattice and ad = 3 sc lattice.ξ(0) = a/2√2z.

problem. Ford = 2, ξpair can be expressed in terms of the complete elliptic integrals:

(ξpair/a)
2 = L1/L2 L1 =

∫
ρ1(ε)/E(ε)

6 dε L2 =
∫
ρ(ε)/E(ε)2 dε (40)

ρ1(ε) = N−1
∑
k

(∇εk)2δ(ε − εk) = 8t

π2

[
E
(

1− ε2

16t2

)
− ε2

16t2
K
(

1− ε2

16t2

)]
(41)

for |ε/4t | < 1, whereK and E are the complete elliptic integrals of the first and second
kind [25], respectively, andE(ε) andρ(ε) are given by equation (27) and equation (36).

The plots ofξpair and the GLξ are shown in figures 17 and 18. Althoughξpair and the
Ginzburg–Landau coherence lengthξ are different lengths, it turns out that at half-filling
they are very close to each other in the HFA (figure 17). A similar behaviour is observed
over a wide range of electron densities for fixedU , from half-filling to about 0.1 (figure 18).
For a largeU the pair radius tends to zero together with the Ginzburg–Landau coherence
length calculated within the HFA while the slave-boson calculations of the Ginzburg–Landau
coherence length yield a finite and constant result. This is the correct result because the
coherence length is finite even for a very small separation between the paired electrons.

3.5. The case whered = ∞
An interesting part of the present study concerns the infinite-dimensional cased = ∞.
The idea was introduced by Metzner and Vollhardt [6] as an approximation of thed = 3
case, greatly simplifying the many-body calculations. Ford = ∞ the SBMFA, which is
equivalent to the Gutzwiller approximation of the Gutzwiller wave function, yields the
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Figure 17. The Ginzburg–Landau coherence lengthξ/ξ(0) in the SBMFA and HFA and the
pair radius versus the on-site interactionU/4t for a d = 2 square lattice at half-filling and for
the electron densityn = 0.3. ξ(0) = a/2√2z.
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Figure 18. The Ginzburg–Landau coherence lengthξ/ξ(0) and the pair radius versus the
electron concentrationn for U/4t = 1 for a d = 2 square lattice in the SBMFA and HFA.
ξ(0) = a/2√2z.

same results as the calculations with the use of the Gutzwiller wave function without
the Gutzwiller approximation. To obtain finite results we have used renormalized units:
t∗ = t√2d ≡ 1, in accordance with the remark at the beginning of section 3. Figure 19
presents plots of the energy gap for different lattice dimensionalities forU∗ = U/t∗ = √6
(which for d = ∞ is smaller thanU ∗c shown in figure 1). The plots converge to the plot
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Figure 19. The energy gap int∗-units versus the electron concentrationn for d = 1 andd = 2
square lattices, ad = 3 sc lattice and ad = ∞ lattice, forU/t∗ = √6 in the SBMFA.
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Figure 20. The energy gap int∗-units versus the electron concentrationn for a d = 3 sc lattice
andd = ∞ for U/t∗ = 5

√
6 in the SBMFA and the HFA.

for d = ∞ with increasing dimensionality and the results ford = 3 lie close to those for
d = ∞. An exception is given in figure 20, where the curves are plotted forU ∗ = 5

√
6

(larger thanU ∗c for d = ∞). In the infinite-dimensional case the bandwidth is infinite and
a bound state cannot be formed, unlike in thed = 3 case. The plots converge only for
intermediate densities and half-filling.

In general, we can say that the results ford = ∞ provide a good quantitative
approximation to those from the calculations performed ford = 3. As far as the energy
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gap behaviour is concerned, we notice that, unlike for thed = 3 case, electrons will never
form a bound pair in an empty lattice ford = ∞ (figure 20).

4. Summary

We have carried out a ground-state analysis of the attractive Hubbard model for arbitrary
band filling in one, two and three dimensions as well as ford = ∞, using the Kotliar–
Ruckenstein slave-boson mean-field approach. We have also demonstrated its equivalence
to the explicitly spin- and charge-rotation-invariant method at the mean-field level. Due
to the attraction–repulsion transformation, the results are also applicable to the half-filled
repulsive Hubbard model. The attractive Hubbard model is one of the simplest for displaying
a crossover from BCS to Bose-type superconductivity in the s-wave channel. Our results for
superfluid characteristics substantiate and give further insight into the nature of the crossover
from BCS-like to local pair (composite-boson) superconductivity.

The picture of smooth crossover from weak to strong coupling, obtained earlier within
the broken-symmetry HFA [2] and the HFA–RPA (random-phase approximation) method
for collective modes [4, 27, 25], atT = 0, is confirmed.

For the range ofU -values and lattice structures considered, the calculated energy
gap clearly indicates the advantage of the SBMFA over the HFA, especially as regards
quantitative results. The energy gap agrees with the HFA only in the small-density limit.
A comparison with the exact results in one dimension shows that the SBMFA introduces
important corrections but still produces results quite far from the exact ones.

We have also examined the influence of the lattice dimensionality on the thermodynamic
and electromagnetic properties of the model. We noted that there are two sets of units, the
hopping integralt and the half-bandwidthD, which yield opposite behaviour of the model:
if a parameter grows with the dimensionality, expressed in terms of one unit, it decreases
when expressed in terms of the other. Int-units, the value ofU/t for which the minimum of
the band-narrowing factor and the maximum of the condensation energy occur, the absolute
value of the condensation energy and the Ginzburg–Landau correlation length grow with
increasing dimensionality. The ratio of the slave-boson energy gap to the Hartree–Fock
energy gap and the London penetration depthλ decrease with growing dimensionality. In
D-units, the behaviour is the opposite: whatever grows int-units diminishes inD-units;
what becomes smaller int-units becomes larger inD-units. An interesting property is
exhibited by the ratio of the SBMFA energy gap to the HFA energy gap at half-filling. In
the weak-coupling limit the smallest value of the ratio is ford = 1; it is larger ford = 3
and largest ford = 2, irrespective of the units. This feature is related to the van Hove
singularity for d = 2. For largeU , the sequence depends on the dimensionality and the
unit applied.

Another interesting feature connected with van Hove singularity was observed in the
irregular behaviour of the band-narrowing factorq for the two-dimensional square lattice
and the bcc lattice. This irregularity does not appear in the behaviour of the other quantities;
it is concealed by the mean-field approximation.

The difference between the value of a given quantity calculated in the SBMFA method
and the same quantity calculated in the HFA usually diminishes with growing|U |. One
exception is provided by the Ginzburg–Landau correlation length, which turns out to measure
the correlations among pairs. In the HFA the Ginzburg–Landau correlation length and the
pair radius tend to 0 in the large-U limit, unlike the Ginzburg–Landau correlation length
calculated in the SBMFA, which tends to a finite value. This is the case where the use of
the SBMFA introduces qualitative changes.
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Application of the SBMFA enables us to calculate the condensation energy, which
is incorrectly overestimated in the HFA. We have found that, although the condensation
energy is only a qualitative approximation to the critical temperature in all dimensions, we
can obtain reasonable Uemura-type plots. We have also shown thatTc versus 1/λ2 and the
ratio of the energy gap to the critical temperature exhibit scaling properties.

Our results for the case of infinite dimensions have shown that they are very good
approximations to the ones for three dimensions, except for the energy gap, which for
strong coupling is well approximated in the range of densitiesn & 0.5. There will be no
bound state in the empty-lattice limit ford = ∞, due to the infinite bandwidth for that case.
Because the calculations based on a Gutzwiller wave function with and without Gutzwiller
approximation using the SBMFA yield the same results ford = ∞ [26], we believe that
this method becomes more accurate in high dimensions.

The SBMFA and HFA results presented confirm the smooth evolution of the
electromagnetic properties and energy gap as well as the condensation energy from weak to
strong coupling atT = 0, for all lattice dimensionalities and band fillings. Some quantities
like the London penetration depth and the energy of the superconducting ground state are
very close to the ones calculated in the HF approximation for all coupling strengths. Other
quantities, like the energy of the normal state, the thermodynamic critical field and the
Ginzburg–Landau correlation length agree with the HFA results only in the weak-coupling
limit. This is due to the overestimation of the condensation energy by the HFA beyond the
weak-coupling limit. The SBMFA yields reliable results in the intermediate- and strong-
coupling regions which agree with perturbational treatments in the strong-coupling limit.

The approach presented, which is of mean-field type and does not include fluctuations
of bosonic fields, can be extended in several ways. One is to consider inhomogeneous SB
solutions, which could lead to non-linear, localized pairing bag excitations in a 2D lattice
[28]. Second, it is of interest to examine fluctuation effects beyond the SBMFA, which
can be especially relevant for finite-temperature crossover [19, 29]. This problem however
awaits further studies.
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Appendix

Here we derive the free energy of the superconducting state in the SBMFA directly from
the negative-U model, without resorting to the attraction–repulsion transformation. In this
way we prove the equivalence of the approaches starting from the negative-U and from the
positive-U Hubbard model.

We start from the negative-U Hubbard model, with the pairing fieldλ(S) added:

H = −t
∑
i,j,σ

c
†
iσ cjσ − U

∑
i

ni↑ni↓ − µ
∑
i,σ

niσ + λ
(S)

2

∑
i

(
c
†
i↑c
†
i↓ + ci↓ci↑ −X

)
(A1)

whereX = 2x0 is defined in equation (27). We apply the following canonical trans-
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formation: (
ci↑
c
†
i↓

)
=
(

cosφi sinφi
− sinφi cosφi

)(
c′i↑
c
′†
i↓

)
(A2)

which corresponds to rotation in the space of charge operatorsρ:

ρix = (ρ†i + ρ−i )/2 ρiy = (ρ†i − ρ−i )/2i ρiz = (ni↑ + ni↓ − 1)/2

ρ
†
i = c†i↑c†i↓ ρ−i = ci↓ci↑

with the same rotation matrix as in equation (7) andθi = 2φi . Let us note that

X = 〈ρ†i 〉 + 〈ρ−i 〉 = (2/N)
∑
i

〈ρix〉.

After this transformation, introducing the slave-boson operators, the saddle-point approx-
imation for the Bose fields and transformation to the reciprocal space, we obtain (omitting
the primes)

H =
∑
kσ

[
q cosθεk − 1

2
(h cosθ + λ(S) sinθ − U)− λ(2)

]
f
†
kσ fkσ

+
∑
k

[
q sinθεk + g

2
(λ(S) cosθ − h sinθ)

]
(f
†
k↑f

†
−k↓ + HC)

+ N
[
−Ud2+ h

2
(cosθ − 1)+ λ

(S)

2
(sinθ −X)+ 2λ(2)(p2+ d2)

]
(A3)

whereh ≡ 2µ+ U ; q is given by equation (11) andg by

g =
〈

1√
1− p†iσ piσ − d†i di

e
†
i di

1√
1− e†i ei − p†iσ piσ

〉
(A4)

with normalizing factors introduced like in equations (9) and (10). Next, we introduce the
new variables

h̄

2
= h

2
−
(
U

2
− λ(2)

)
cosθ

λ̄(S)

2
= λ(S)

2
−
(
U

2
− λ(2)

)
sinθ (A5)

which make the Hamiltonian more symmetric and we diagonalize it by applying the
Bogolyubov transformation. Taking into account the following relations:

〈ρ ′z〉 = 〈(n′i↑ + n′i↓ − 1)/2〉 = (2p2+ 2d2− 1)/2= p2+ d2− 1/2 (A6)

with 〈ρx〉 = −〈ρ ′z〉 sinθ and 〈ρz〉 = 〈ρ ′z〉 cosθ , we finally get the free energy of the super-
conducting state in the form

F = − 2

βN

∑
k

ln[2 cosh(βEk/2)] + Up2− λ̄(S)X/2+ h̄(n− 1)/2− U
2
n (A7)

where

Ek =
√[
q cosθεk − 1

2
(h̄ cosθ + λ̄(S) sinθ)

]2

+
[
q sinθεk − g

2
(h̄ sinθ − λ̄(S) cosθ)

]2

.

(A8)

The slave-boson band-narrowing factors read

q = 4p2
(
1− 2p2+

√
(1− 2p2)2−m2

)
1−m2

g = 2
√
(1− 2p2)2−m2)

1−m2
(A9)
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where

m2 = 〈(2ρ ′z)2〉 = 〈4(ρ2
x + ρ2

z )〉 = (n− 1)2+X2.

When we replacep by d, X by −mx andn− 1 bymz, equations (A7)–(A9) reduce to
equations (17)–(19), so we obtain the same results as in reference [10], where they were
derived for the repulsive Hubbard model on a bipartite lattice for the half-filled band in a
magnetic field. We notice that the formulation of the SBMFA given in this appendix applies
to non-bipartite lattices as well.
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